Pular para o conteúdo principal

Ligações Atômicas

As ligações atômicas exploram os diferentes tipos de ligações químicas que mantêm os átomos unidos nos materiais. São discutidos quatro tipos principais de ligações: iônica, covalente, metálica e secundária (ou van der Waals). Cada tipo de ligação é associado a diferentes categorias de materiais de engenharia, como metais, cerâmicos, polímeros e semicondutores.


Ligação iônica: envolve a transferência de elétrons entre átomos, resultando em uma estrutura regular de íons, como no NaCl.

Ligação covalente: exemplificada pelo metano (CH₄), envolve o compartilhamento de elétrons entre átomos.

Ligação metálica: é caracterizada por uma "nuvem" de elétrons de valência que liga os íons metálicos, como no cobre (Cu).

Ligações secundárias ou van der Waals: são forças intermoleculares fracas que ocorrem devido a dipolos temporários. A aula também compara as energias e comprimentos de ligação para diferentes tipos de ligações covalentes.

Comentários

Postagens mais visitadas deste blog

Diagrama de Fases dos Materiais

Os diagramas de fases fornecem informações sobre a microestrutura dos materiais em função da temperatura e composição. Eles ajudam a prever propriedades mecânicas e transformações de fases.  Regra da Alavanca A regra da alavanca é utilizada para determinar a proporção das fases presentes em uma liga a uma determinada temperatura. Ela é essencial para a análise de diagramas de fases e para prever a microestrutura resultante. Reações de Fase Os diagramas de fases também mostram reações de fase importantes, como: Eutética : Transformação de uma fase líquida em duas fases sólidas. Eutetoide : Transformação de uma fase sólida em duas novas fases sólidas. Peritética : Transformação de uma fase líquida e uma fase sólida em uma nova fase sólida.

Seleção de Materiais

Os mapas de Ashby são ferramentas essenciais na seleção de materiais, seguindo uma filosofia de projeto em quatro passos: Traduzir os requisitos do projeto : Definir a função do componente, as condições essenciais, os objetivos do projeto e os parâmetros que podem ser alterados pelo projetista. Excluir materiais que falham nas restrições : Eliminar materiais que não atendem às especificações. Classificar por capacidade de atender aos objetivos : Usar índices apropriados para classificar os materiais. Procurar informações que sustentem os candidatos promissores : Buscar dados adicionais para os materiais selecionados. Os mapas de Ashby representam pares de propriedades dos materiais, como módulo de elasticidade e densidade, permitindo a visualização das diferenças entre as famílias de materiais.

Microestrutura e Propriedades

  A microestrutura dos materiais é crucial para entender suas propriedades e comportamentos. Ela envolve o estudo das fases presentes, sua composição, quantidade, tamanho, forma, distribuição e orientação. A microestrutura complementa a definição de propriedades iniciadas pela estrutura atômica e cristalina do material. Critérios de Análise da Microestrutura Os principais critérios para analisar a microestrutura incluem: Fases presentes; Composição das fases; Proporção das fases; Tamanho das fases; Distribuição das fases; Forma das fases; Orientação das fases.   Propriedades Aditivas e Interativas As propriedades dos materiais podem ser aditivas ou interativas: Aditivas : Determinadas pela média das propriedades de cada fase individual, como densidade e condutividade térmica. Interativas : Dependem do comportamento das fases adjacentes, como propriedades mecânicas (dureza, resistência).